1	How metal clusters are classified and what are the bases of their classification? Write the main differences	
	between these group clusters.	
2	Write about the characteristic properties of the metals those form clusters.	3
3	How do 'd' orbitals effect the cluster formation?	2
4	Metals form clusters at low oxidation state (-1 to +3). Why metals do not form of metal clusters at high	2
	oxidation states?	
5	[Re ₂ Cl ₈] ²⁻ cluster has very short Re-Re bond (224 nm) as compared to Re-Re distance (275nm) in metal	3
	crystal and chlorine atoms are eclipsed position. How would you explain these?	
	Discuss about the structural features and nature of bonding of [Re ₂ Cl ₈] ²⁻ clusters	3
	What do you understand by quadrupole bonding?	2
	Discuss about the trinuclear halides clusters of rhenium	2
	Discuss about the hexa-nuclear helo-cluster compound of Mo, Ta and Nb. What are the structural	
	differences between them	3+2
	What is poly atomic zintle anions and cations? How theses zintle ions are prepared? Discuss about the	
	structures of any three zintle ions.	1+1+3
	Both Bi_9^{5+} and Sn_9^{4-} are nine metal centered poly atomic zintle but their structures quite different. Write	
	about their structural differences.	2
	Write about the preparation and structure of Mo ₄ Cl ₈ (PR ₃) ₄	3
	Discuss about the tetranuclear halo clusters of molybdenum and tungsten.	3
	Mo ²⁺ , Nb ³⁺ and Ta ³⁺ all three form dinuclear class-II clusters. What are the structural pattern of these	3
	clusters.	

6	Discuss about the carbonyl clusters of 1 st transition series.	3
	Discuss about the class II type clusters of 1 st transition series.	2
7	Give evidences to show that in hexa alkoxo dinuclear tungsten and molybdenum has M-M triple bonds.	3
8	All three elements of group -8 (Fe, Ru and Os) form di-nuclear carbonyl cluster but only iron cluster has	
	two bridged CO not others. How this could be rationalized.	2
	In the ligand substitution reaction of square planar complexes, the plot of kobs as function of nucleophile	
	concentration gives slope and intercept. What does the slope and intercept signify?	3
	Ligand substitution reaction of square planar complexes showed two rate constants; one (k_1) is	
	independent on nucleophile concentration and other (k_2) is dependent nucleophile concentration. Does the	
	k_1 represent dissociative pathway of ligand substitution reaction? Justify your answer.	3
	Discuss about the role of solvent in the ligand substitution reaction of square planar complexes.	3
	Write about the complete reaction scheme of ligand substitution reaction of square planar complexes.	3
	Establish the general rate law of ligand substitution reaction of square planar complexes.	3
	Discuss about the characteristics of ligand substitution reaction of square planar complexes.	3
	Ligand substitution reaction of square planar complexes is 'stereo-selective'. What does it signify?	
	In general, substitution reaction of square planar complexes gives exclusively cis or trans product if	
	starting complex is cis or trans respectively. Is it possible to get cis product from a trans reactant or vice-	
	versa? Justify your answer with explanations.	2
	What are the evidences in favour of solvent assisted pathway of substitution reaction of square planar	
	complexes.	
	What do you understand the terms 'trans-effect' and 'trans-influence'? What are the differences between	
	these?	
	Discuss about the polarization theory of 'trans effect'. What are the evidences in favour of polarization	3+
	theory? What are the drawbacks of the polarization theory?	1+2
	Discuss the detailed mechanism of the ligand substitution reaction of square planar complexes.	3
9	Rate of electron transfer of $[Co(NH_3)_6]^{+2}$ and $[Co(NH_3)_6]^{+3}$ is very slow $(1.7x10^{-7} \text{ m}^{-1}\text{s}^{-1})$ but that for	
	[Ru(NH ₃) ₆] ⁺² complexes is very fast. How could you account for this difference in rate?	3
10	Reduction of $[Co(NH_3)_6]^{+3}$ by $[Cr(H_2O)_6]^{+2}$ is very much slow that the reduction with $[V(NH_3)_6]^{+2}$ is very	3
	fast how this could be explained.	
	Cross electron transfer reaction of $[Co(phen)_3]^{3+} [Co(phen)_3]^{2+}$ is very fast compared to that of	
	$[Co(NH3)_6]^{3+}$ and $[Co(NH3)_6]^{2+}$ electron transfer reaction	
11	What are the evidences in favour of Inner Sphere Mechanism of electron transfer reaction?	3
12	Elucidate the detail mechanism of Outer Sphere Mechanism of electron transfer reaction	4
13	Write about the possible rate determining steps of Inner Sphere Mechanism of electron transfer	3
	Reactions?	

 [Cr(H₂O)₅SCN]⁺³ and 71% [Cr(H₂O)₅NCS]⁺³. Write about electron transfer process and explain the reasons for two products. The products of the reaction between [IrCl₆]⁻² and Cr(H₂O)₆]⁺² is [IrCl₆]⁻³ and Cr(H₂O)₆]⁺³. What 	2 1+3 1+2
the reasons for two products.15The products of the reaction between $[IrCl_6]^{-2}$ and $Cr(H_2O)_6]^{+2}$ is $[IrCl_6]^{-3}$ and $Cr(H_2O)_6]^{+3}$. What	1+3 1+2
15 The products of the reaction between $[IrCl_6]^{-2}$ and $Cr(H_2O)_6]^{+2}$ is $[IrCl_6]^{-3}$ and $Cr(H_2O)_6]^{+3}$. What	1+2
	1+2
mechanism is followed, outer sphere or inner sphere? Give reasons.	
The intermediate $[Fe(SCN)(H_2O)_5]^{2+}$ is detected in the reaction of $[Co(NCS)(NH_3)_5]^{2+}$ with	
$[Fe(H_2O)_6]^{2+}$ in the aqueous medium to produce $[Co(H_2O)_6]^{2+}$ and $[Fe(H_2O)_6]^{3+}$. Predict the reaction	
mechanism with explanations.	3
16 Rate constant of the reduction of $[Co(NCS)(NH_3)_5]^{2+}$ $[Co(SCN)(NH_3)_5]^{2+}$ with $[Cr(H_2O)_6]^{2+}$ is 20.0 and	
$2x10^5 \text{ M}^{-1}\text{s}^{-1}$. Explain the hogher rate of the 2^{nd} reaction	
17 'Presence of suitable bridging ligand in the coordination sphere of an inert oxidant does not ensure its	2
Reduction by a reductant through the ISET path'. Explain with example. [Hint: A.K Das, 5 th Vol p. 807]	2+4
18 $[CoNH_3)_5H_2O]^{2+}$ reduces with $[Cr(H_2O)_6]^{2+}$ at faster at higher pH. Why? [Hint: A.K Das, 5 th Vol p. 803]	3
19 Redox reaction of $[Fe(H_2O)_6]^{3+}$ - $[Fe(H_2O)_6]^{2+}$ goes through OSET path at lower pH but at ISET	1
20 path at higher pH. Why? [Hint: A.K Das, 5 th Vol p. 803]	
	4
21	2
	3
22	3
	2
23	2
24	3+2
25	3
	2
26	
27	
28	3
	3
29	
30	2+2